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Friction and noise-induced coherent structures in boundary lubrication

I. Tovstopyat-Nelip and H. G. E. Hentschel
Department of Physics, Emory University, Atlanta, Georgia 30322

~Received 21 September 1999!

We examine the effect of stick-slip boundary conditions on the friction generated by a molecularly thin layer
of a liquid lubricant separating two plates. For one-dimensional compressible flows, noise-induced coherent
dissipative structures on a micron scale are generated due to cooperation between the external drive and the
thermal noise. As a function of the thermal noise these structures show a peak in their amplitudes similar to
stochastic resonance. At low velocities a reduction in friction with increasing thermal noise is observed.

PACS number~s!: 47.52.1j, 83.50.Gd, 83.50.Ws, 68.15.1e
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I. INTRODUCTION

The study of friction between two surfaces is a very o
problem, but an extremely important one from a technolo
cal point of view@1–4#. This is especially true on the meso
scopic scale, where, despite significant efforts made in re
years, much remains to be understood about the fundam
processes responsible for friction and lubrication. New
perimental methods such as the quartz crystal microbala
@5# and the surface-force apparatus@6–11# have, however,
provided new insights into the nanoscale and mesoscale
cesses occurring during dissipation at interfaces, and sti
lated a great deal of theoretical research@12–16#.

It is common to distinguish hydrodynamic lubricatio
from boundary lubrication. In the first case, the layer of flu
between the sliding plates is relatively thick, and the fricti
can be calculated straightforwardly from the Navier-Stok
equations with stick boundary conditions. The case
boundary lubrication, however, when the lubricating layer
molecularly thin, has a much more complex dynamics. Co
mon theoretical approaches to this problem include stu
of nonlinear dynamical systems consisting of several p
ticles moving between two plates@12–14#, and molecular
dynamics simulations of ensembles of a finite number
particles@15,16#.

While fluids retain their bulk shear flow properties wh
the thickness of the lubricating film is more than about
molecular diameters, recent studies show that confined
film fluids display strong viscoelastic characteristics, sl
relaxation, and solidlike behavior to the point where the el
tic forces significantly exceed the viscous ones@8,9,11,7,4#.
At the same time, it is known experimentally that even o
molecular layer of a fluid can significantly reduce the int
facial friction @17#. A liquid in such an extreme state of con
finement can exist in a variety of differently ordered sta
depending on the temperature and the sliding velocity@3#,
and dynamic phase transitions such as shear melting can
cur during sliding. The reason for, and the nature of, su
slowed down dynamics in confined fluids is still not ful
understood, and its nonequilibrium structure remains to
elucidated@11,4#.

At the mesoscopic scale stick-slip boundary conditio
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represented by velocity-weakening effective interactio
@18,19# between the confined fluid film and the interface, c
be expected to significantly affect their hydrodynamic beh
ior. In this paper we therefore study the compressible hyd
dynamic behavior of a molecularly thin fluid layer betwe
two sliding plates in which the dominant interactions a
these velocity-weakening forces. Because of the comple
of the problem, we only consider a one-dimensional vers
of the fluid evolution. Numerical simulations of the resultin
equations of motion show that the complex dynamics of
system gives rise to the appearance of a coherent dissip
microscale structure in a fluid which was tentatively pr
dicted by Demirel and Granick@10,4#. Also, we observed a
reduction in friction at low velocities with increasing tem
perature.

The scheme of the paper is as follows. In Sec. II
describe our model. Section III is devoted to a presenta
and discussion of our numerical simulations. In Sec. IV
discuss the relationship between the temperature of the
fined fluid layer and the strength of the random thermal fo
acting on it. Section V concludes the paper with a summ
and discussion of our results.

II. STICK-SLIP HYDRODYNAMICS

The presence of stick-slip boundary conditions at the m
soscale is a direct result of the strong intermolecular for
that exist between a sliding thin film and the surface laye
the atomic scale. There exists strong evidence that the s
forces on ordered arrays are much larger when the arra
interacting with a commensurate substrate than with an
commensurate one@1,20,21#. The underlying reason for this
is clear: when the lattice is commensurate each atom ca
in a potential minimum of the substrate. For an incomme
surate lattice strong frustration occurs as the atoms in
ordered array try to accommodate both their interatomic
teractions and their atom-substrate interactions, leading
commensurate-incommensurate transitions@22#. Studies of
the influence of such interactions using the dynamic Fren
Kontorova model lead to the conclusion that velocity wea
ening stick-slip forces are a generic consequence of s
interatomic interactions@12,13#. Indeed, such stick-slip
boundary conditions are not limited to the nanoscale, an
3318 © 2000 The American Physical Society
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PRE 61 3319FRICTION AND NOISE-INDUCED COHERENT . . .
macroscopic investigations of dry friction@23–25# at low
velocities the dynamics was also usually characterized
intermittent periods of stick and slip. Several dynamical tra
sitions have been found in such macroscopic investigat
including a supercritical Hopf bifurcation between stick-s
and steady sliding, and hysteresis due to subcritical H
bifurcations.

Investigations of the consequences of such veloc
weakening interactions have already been used in the con
of earthquake models@18,19,26# involving the dynamics of
sets of elastically coupled driven blocks interacting with
substrate via singular velocity weakening friction forces. T
dynamics of the earthquake models is described by cou
sets of ordinary nonlinear differential equations. Driven th
films also show strong viscoelastic characteristics, wh
means that their dynamics should be described by the hy
dynamics of compressible fluid, while the strong stick-s
interactions will lead to strong velocity weakening stresse
the interface.

In principle, the general form of the elastohydrodynam
equations that needs to be investigated to understand th
havior of the driven thin film is, therefore,

r]va /]t1rvW •¹W va52]p/]xa2]tab /]xb1rGa~xW ,t !,
~1!

]r/]t1¹W ~rvW !50,

wheretab is the stress tensor in the thin film, while the la
term @Ga(xW ,t)# on the right hand side of Eq.~1! represents
the thermal noise which has Gaussian statis

^Ga(xW1 ,t1)Gb(xW2 ,t2)&5Gdabd(xW12xW2)d(t12t2).
The stress tensor will have strong viscoelastic charac

istics, resulting in a relationship between the rate of str
]va /]xb and the stresstab of the form

]va /]xb5~11s!/Edtab /dt1~t0 /h!F~t/t0!, ~2!

wheres is Poisson’s ratio,E is Young’s modulus,h is the
dynamic viscosity of the film, andt0 is a stress scale suc
that, fort!t0, the film behaves as a viscous fluid. For no
Newtonian fluids typical parametrizations might include t
Eyring-Ree formF(x)5sinh(x).

The basic stick boundary conditions for bulk flows ne
to be replaced by nonlinear velocity weakening shear stre
txz(vx) andtyz(vy) at the boundaries of the driven thin film
For example, a typical velocity weakening stress would
t(v)5s0f (v/c), where f (u)51/@bu1sgn(u)#1Ku, andc
is the speed of sound in the compressible thin film. Thus
addition to the boundary conditionsvz(x,y,z50,t)50 and
vz(x,y,z5H,t)50, there exist the nonlinear velocity wea
ening boundary conditions for the components of the vel
ity parallel to the interface:

h]v i~x,y,z50,t !/]z5t„v i~x,y,z50,t !…,
~3!

h]v i~x,y,z5H,t !/]z5t„v i~x,y,z5H,t !2V…,

whereV is the velocity of the upper plate.
Clearly the complexity and nonlinearity of Eqs.~1!–~3!

will lead to large number of different spatiotemporal ph
nomena depending on driving, thermal noise, and mate
properties of the thin film. However, in this paper we wish
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understand the most basic phenomena that such stick
interactions can induce in the driven hydrodynamics of t
films by looking at a one-dimensional version of the hydr
dynamics in which a velocity-dependent friction forceF(v)
between a plate and the layer of a liquid lubricant, sho
schematically by the solid line on Fig. 1, replaces the f
effect of the boundary conditions.

The functionF(v) ranges between6F0 at zero velocity,
decreases monotonically as the velocity grows, and begin
grow linearly after some characteristic velocityv0 ~the ap-
parent discontinuity atv50 should be considered as th
limit case of a continuous dependence at velocitiesv!v0
shown on Fig. 1 by the dotted line!. The forceF(v) acts like
a body force in our one-dimensional model. It can be co
sidered as a coarse-grained representation of the com
stick-slip boundary conditions. It is this force which is th
basic source of nonlinearity in the model and leads to
complex spatiotemporal dynamics exhibited by the thin fil

The velocityv(x,t) and the densityr(x,t) in the driven
film are therefore given by

r]v/]t1rv]v/]x1c2]r/]x

52r@F~v !1F~v2V!#1rG~x,t !, ~4!

]r/]t1r]v/]x1v]r/]x50. ~5!

Here c25]p/]r is the square of the speed of the soun
which may of course be very different from that observed
the bulk fluid, and which we treat as a constant correspo
ing to the average compressibility of the thin film in th
longitudital direction. This assumption is valid provided th
density fluctuations are much less than the average den
which indeed turns out to be the case. The sum of two fo
terms @F(v)1F(v2V)# on the right hand side of Eq.~4!
represents the interaction~force and unit mass! of a fluid
with both plates, one plate being at rest and another
moving with a velocityV. We parametrize the functiona
dependence ofF(v) as

F~v !5F0f ~v/c!, ~6!

where f (u)51/@bu1sgn(u)#1Ku. This form of the func-
tion F(v) corresponds to the solid line in Fig. 1.

The last term on the right hand side of Eq.~4! represents
the thermal noise which is taken to be uncorrelated a
Gaussian:

FIG. 1. The velocity weakening friction forceF(v) between a
plate and the layer of a lubricant as a function ofv.
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3320 PRE 61I. TOVSTOPYAT-NELIP AND H. G. E. HENTSCHEL
^G~x1 ,t1!G~x2 ,t2!&5Gd~x12x2!d~ t12t2!. ~7!

As the fluctuation-dissipation theorem tells us that the
efficient G in Eq. ~7! is proportional to the temperature, i
this paper we useG as a measure of the temperature. We w
elaborate on the relationship betweenG and the real tempera
ture below in Sec. III.

Equation~4! does not contain a viscosity term. This co
responds to one of our basic simplifying assumptions that
dynamics of the thin film is dominated by nonlinear interf
cial interactions, and that the elastic forces in the film
more important then the viscous ones. This appears to
reasonable for very thin films, and strong stick-slip bound
conditions. We have verified this by doing simulations in
presence of viscosity, and found that it does not mak
significant contribution to the dynamics of the system
experimentally reasonable values. Naturally, for thick film
this assumption must break down.

If we take the plates in our problem to be of macrosco
size, then the dimensional parameters in the model are
speed of sound@c#5L/T with dimensions of velocity, the
driving velocity @V#5L/T with units of velocity, @F0#
5LT22 with dimensions of acceleration, and the noi
strength @G#5(L/T)3 with dimensions of velocity cubed
Using the material parametersc and F0 to define units of
length L5c2/F0 and timeT5c/F0, we are left with two
dimensionless parameter, the scaled driving velocityV8
5V/c and the effective thermal noise strengthG85G/c3,
describing the influence of the environment on the dynam

Let us estimate the orders of magnitude of these scale
length L and timeT. In Ref. @10# a modified surface force
apparatus technique was applied to the study of friction
tween two atomically smooth crystals of muscovite m
separated by a molecularly thin film of squalane. The fi
thickness in this experiment was 18 Å, which constitut
several molecular layers, the diameter of the contact in
face was'45 mm, and the value of the external oscillato
driving force was'102 mN. Thus the typical acceleration
applied to the film during the experiment wereF0'1010

21011 m/sec2, while a reasonable estimate of the speed
sound in such films isc'10– 100 m/sec. We therefore ob
tain a typical length scale in the experiment ofL5c2/F0
;1022– 1 mm and time scaleT5c/F0;1029– 1028 sec.
These length and time scales are much larger than the at
length ~;10 Å! and time (;10212 sec! scales, and sugges
that nontrivial hydrodynamic phenomena might appear
such scales, in agreement with the observation of Dem
and Granick that the broad power law distributions in t
frictional forces generated by molecularly thin films upto
nm thick might be due to long lived spatially coherent stu
tures in the thin film@4#. It is the possibility of the existence
of such coherent stuctures that we are interested in inv
gating.

To do this we first divide Eqs.~4! and ~5! by r, and use
instead ofr the logarithmic densitym5 log(r/r0), wherer0
is the average density in the film. In addition, we make
transition to the dimensionless variablesx85x/L, t85t/T,
and v85v/c. The dimensionless equations for the veloc
v(x,t) and the logarithmic densitym(x,t) ~all primes now
omitted henceforth! are therefore
-
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]v/]t1v]v/]x1]m/]x52@ f ~v !1 f ~v2V!#1G~x,t !,
~8!

]m/]t1]v/]x1v]m/]x50. ~9!

Since we consider the system described by Eqs.~8! and ~9!
as infinite in space, we do not introduce any boundary c
ditions, but will rather study the initial value problem star
ing from some initial conditionv0(x),m0(x).

The only dimensionless parameters in our model, wh
we still have to set areb and K in f (u) @Eq. ~6!#. The pa-
rameterb determines the rate of ‘‘velocity weakening,’’ an
K gives the rate of the increase of the force for large velo
ties. Specifically, the minimal velocity occurs atv0 /c
5(Ab/K21)/b. These parameters are material depend
As we expect,v0 /c!1; we chose them to have the phys
cally reasonable valuesb5100 andK52 which fixesv0 /c
'0.06, and use these values throughout this paper.

III. TEMPERATURE AND STRENGTH
OF THE THERMAL NOISE

The explicit relationship betweenG which describes the
influence of the thermal environment on the dynamics of
confined fluid layer and temperatureT can be established in
the case of stick-slip hydrodynamics by generalizing the f
malism of hydrodynamic fluctuations introduced by Land
and Lifshitz@27#. We have to determine the rate of change
the total entropyṠ of the fluid, from which it is possible to
find the coefficientG for the correlation function~7!.

Taking into account the equation of heat transfer,

rT~]s/]t1v]s/]x!52rvF~v !, ~10!

which, together with two dynamic equations~4! and~5!, con-
stitutes the complete system of hydrodynamic equations,
the production of entropy in the layer we obtain

Ṡ5E 2

T
rvF~v !dL. ~11!

In Eq. ~10!, s is the entropy of the fluid per unit mass, an
the integration in Eq.~11! is done over all the whole fluid
layer. In Eqs.~10! and~11! we are measuring temperature
energy units (kB51), and we have neglected the therm
flow term in Eq.~10!, assuming that the temperature grad
ents in the system are small.

Having foundṠ, we can determine the correlation fun
tion of the thermal stochastic forceG(x,t); we obtain

^G~x1 ,t1!G~x2 ,t2!&5
TF~v !

rv
d~x12x2!d~ t12t2!.

~12!

For the hydrodynamic description to be valid we have
assume that the velocity fluctuations are much smaller t
the mean hydrodynamic values of the velocity. This mea
that v in Eq. ~12! cannot be less thanvT , the amplitude of
thermal velocity fluctuations. As, however, in the most inte
esting regionv is of order of magnitude of the velocity of th
external driveV@vT , to a good approximation we can re
place Eq.~12! by
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^G~x1 ,t1!G~x2 ,t2!&5C
TF0

r0V
d~x12x2!d~ t12t2!,

~13!

whereC is a constant of order of magnitude of 1. Substit
ing into Eq. ~13! a room temperature forT, V;0.1c and
r0;1029 g/cm—typical values for one monolayer—andF0
and c estimated in Sec. II, we obtainG85G/c3;1023, the
characteristic order of magnitude used in our simulations

We emphasize once again that in the case whenv andr
fluctuate strongly enough, and amplitudes of their fluct
tions exceed corresponding average values, the hydr
namic description is not valid. For our problem this is t
case of smallV and relatively large temperatures. Neverth
less, our results in this range of parameters seem to be q
tatively reasonable: the linear dependence ofF f r on V and
decreasing ofF f r with increasingG; see Fig. 2. A reasonabl
macroscopic description of this region of parameters
then be done within linear response theory.

IV. NUMERICAL RESULTS

Let us first consider Eqs.~8! and~9! without the stochas-
tic term. For sufficiently low velocities of the upper plateV
,V1* , whereV1* 52(Ab/K21)/b[2v0 /c ~in our caseV1*
'0.12), the system has three stationary solutions in the
main 0<v(x)<V corresponding to constant distributions
density and velocity:

v~x!50, m~x!50, ~14a!

v~x!5V, m~x!50, ~14b!

v~x!5V/2, m~x!50. ~14c!

Note that if the existence of solutions~14a! and~14b! is not
immediately obvious for the singular form ofF(v), then it
becomes clear when we regardF(v) as a limit of a continu-
ous function.

Linear stability analysis shows that the first two solutio
are stable, and that they are attractors of the system. T
represent the film sticking to the static lower or moving u
per plate, respectively. The third solution is unstable a
represents the whole fluid moving with the average veloc
of the upper and lower plates.

FIG. 2. The effective temperature dependent friction forc
F f r(V) for three different temperatures.G50.002, 0.005, and 0.01
-

-
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-
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When the velocity of the upper plate reachesV1* , a pitch-
fork bifurcation in the dynamics occurs: solution~14c! be-
comes stable and two new fixed point solutions emerge,

v~x!5V/26u0 , m~x!50, ~15!

which are both unstable withu05A(V/211/b)221/(bK).
This situation exists for driving velocitiesV1* ,V,V2* ,
where V2* 51/K21/b ~note thatV1* ,V2* for K,b; in our
case,V2* 50.49). Finally, forV.V2* the two stick solutions
disappear and we end up with only one stationary solut
@Eq. ~14c!# which is stable. Thus we are dealing with a su
critical pitchfork bifurcation atV5V1 if we take as our con-
trol parameterr 5(V12V)/V1.

Numerically we can show that in the caseV,V1* ~or
r .0) any initial conditions with a constant density an
v0(x),V/2 for all x belongs to the basin of attraction o
solution ~14a!, and the film will stick to the lower plate
Conversly, the set of initial conditions withv0(x).V/2 for
all x belongs to the basin of attraction of Eq.~14b!, and the
film will ultimately stick to the upper moving plate. But ini
tial distributions ofv(x), crossing the linev(x)5V/2, do not
evolve to any stationary attractor, and as we shall see
distributions evolve into mesoscopic scale fluctuating coh
ent structures. The same is true for higher velocities of
upper plateV1* ,V,V2* ~or r * ,r ,0) though the basins o
attraction of solutions~14a! and ~14b! are now determined
not by V/2, but byV/22u0 andV/21u0, respectively.

We are interested in calculating the resulting friction for
acting on the moving plateF f r(V). It is this quantity which
will control dynamics of the upper plate when pulled acro
the lubricated surface. The dimensionless force per unit m
is given by the integral~in order to obtain the real force pe
unit mass we have to multiply it byF0)

F f r~V!5
1

Lplate
E

0

Lplate
dx em(x) f „v~x!2V…, ~16!

whereLplate is the size of the upper plate. Our simulatio
show that, in agreement with the experimental results
Demirel and Granick@10#, the friction fluctuations do not
average to a constant value over the large contact area o
experiment, but coherent dissipative structures at mesosc
scale dominate the dynamics.

It can easily be seen that if the system is found in one
the attractive stick phases~14a! and~14b!, the resulting fric-
tion F f r(V) coincides withf (V), the basic force of interac
tion between a plate and the layer from Eq.~6!. Otherwise, if
the system does not evolve to any of these attractors,
resulting forceF f r(V) will be quite different fromf (V). For
instance, in the caseV,V1* , the simplest nontrivial initial
distribution v0(x), crossing the linev(x)5V/2 just once,
evolves to a stable ‘‘kinklike’’ solution. The velocity profile
of this kink moves in the liquid with a speed close to t
speed of the soundc. The velocity of the moving plate in this
simulation was chosen atV50.01~in units ofc). The calcu-
lation of the effective friction force for this solution give
F f r(V50.01)50.29, which drastically differs fromf (V
50.01)50.52.

Note that although we choose the velocityV of the upper
plate to be a constant, we would expect the results we n

s
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describe to be valid even when the dynamics of the up
plate is not steady. This ‘‘adiabatic’’ point of view is just
fied by the fact that the time scaleT of our problem is typi-
cally very small with respect to a time scalet characterizing
the motion of the upper plate~for instance, for the frequenc
of the external drive 1 kHz,t;1023 sec@T).

In the absence of thermal noise, if the confined fluid
taken to be initially at rest withv0(x)50 andm0(x)50, it
will always stay in the basin of attraction of this attractor~at
least, as long as the velocity of the upper plate does
become too large:V,V2* ). Therefore, for this system th
effective friction forceF f r(V) will coincide with f (V).

The presence of thermal noise changes the situation
matically. When the velocityV is small enough, the stochas
tic force can excite the liquid sufficiently for the velocit
distribution to cross the linev(x)5V/2, so the system doe
not evolve to any of the two attractors~14a! and ~14b!. The
spatiotemporal fluctuating structure, determined by nonlin
properties of the system and induced by thermal noise
developed, andF f r(V) differs significantly fromf (V). Scal-
ing arguments would suggest that this occurs whenG*cV2

or G8*(V/c)2. Thus such noise induced fluctuations will b
most easily developed at low velocitiesV. When the upper
plate moves with significantly higher velocities, the therm
excitation becomes relatively small, but, if the confined flu
is already excited and the velocity distribution crosses
line v(x)5V/2, the spatiotemporal fluctuations will persis
This means that to observe this fluctuating structure, w
simulating the dynamics of the fluid for relatively largeV
and relatively smallG, we need to choose the initial velocit
distribution to be close tov0(x)5V/2, and the dynamic evo
lution of the fluid will be completely different compared t
the evolution from the initial conditionv0(x)50 when the
film will stick to the lower interface. This strong dependen
of the evolution on initial conditions is the generic behav
in complex nonlinear dynamic systems. The fact that t
type of behavior may be relevant to the physics of friction
thin lubricating films is, however, surprising.

We numerically integrated the hydrodynamic equations
motion for several different values of thermal noise and fo
wide range of velocities of the moving plateV. The initial
conditionsv0(x)5V/2 andm0(x)50 were taken in all these
calculations, as argued above.

Figure 2 represents the effective temperature depen
friction forcesF f r(V) for three different values of therma
noise:G50.002, 0.005, and 0.01. As we showed in Sec.
these values ofG correspond to experimentally reasonab
temperatures of order of magnitude of a room temperatur
can be seen that the functional dependenceF f r(V) in the
presence of temperature differs significantly fromf (V), es-
pecially at small velocities.

Figures 3–5 present the velocity and density distributio
for G50.002 and three different values ofV: 0.002, 0.12,
and 0.2. These three cases give three distinct types of be
ior of the system whenV,V1* , V'V1* , andV.V1* . In the
first case,V50.002@Fig. 3~a!#, the stationary solution~14c!
is unstable and the system tends to build a spatiotemp
structure with the velocity oscillating between two attracto
v(x)50 and v(x)5V. However, the thermal noise in thi
case is relatively large and the dynamics is basically de
mined by the stochastic term. Nevertheless, the density fl
er
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tuations@Fig. 3~b!# reveal some periodic structure of sma
amplitude on the background of the noise. It is easy to
derstand that the corresponding forceF f r(V) has to be rather
small because the velocity@Fig. 3~a!# strongly oscillates al-
most symmetrically around zero. This causes the sec
multiplier term in the integral in Eq.~16! to oscillate and to
make the integral small.

In the caseV50.12 ~Fig. 4!, solution ~14c! is neutrally
stable. This is the case with the most pronounced structur
the velocity and, especially, in the density fluctuations. Sin
our natural spatial scale isc2/F0, the period of this structure
is of order of magnitude of 10mm. Indirect evidence of the
existence of such large scale spatial structures in the thin
of a liquid lubricant was given in Ref.@10#; also see Refs.
@3,4#.

Finally, in the caseV50.2 ~Fig. 5!, solution ~14c! is the
attractor of the system. The thermal noise excites the fluid
the vicinity of this attractor, the amplitude of the resultin
periodic structure in density fluctuations being more than o
order of magnitude smaller than in the previous case.

Figure 6 shows the dependence of the amplitudeA
5A^m2& of the density fluctuations on the velocityV for
several values of the thermal noiseG: 0.0001, 0.001, 0.002
and 0.005. The simulations clearly show that all the fluct
tions have a peak forV5V1* '0.12. For velocitiesV.V1*
the amplitude of the density fluctuations grows monoto
cally with G and decreases asV becomes larger.

This behavior can be understood by means of a lin
expansion of hydrodynamic equations~8! and~9! around the
state~14c! which, in this case, is the attractor. The lineariz
equations~8! and ~9! are

FIG. 3. ~a! The velocity distribution and~b! the density distri-
bution in the presence of temperature.G50.002 andV50.002.



l

PRE 61 3323FRICTION AND NOISE-INDUCED COHERENT . . .
ut1
V

2
ux1mx52a~V!u1G~x,t !, ~17a!

mt1ux1
V

2
mx50, ~17b!

whereu(x)5v(x)2V/2, and

a~V!5@ f ~v !1 f ~v2V!#v5V/28 52FK2bY S bV

2
11D 2G .

~18!

Note that asV→V1* critical slowing down occurs:a(V)
'a0(V2V1* ), with a0.0.

Fourier transforming equations~17a! and ~17b! and con-
sidering the dynamics of the individual modes, we obtain

umkvu25
k2uGkvu2

u~v2kV/2!21 ia~V!~v2kV/2!2k2u2 . ~19!

Here mkv and Gkv are Fourier transforms ofm(x,t) and
G(x,t), respectively. Thus

^m~x,t !2&5E dk

2p

dv

2p
^umkvu2&. ~20!

Finally as Eq.~7! yields ^uGkvu2&52G, we obtain

FIG. 4. ~a! The velocity distribution and~b! the density distri-
bution in the presence of temperature.G50.002 andV50.12.
^m~x,t !2&5
G

p2E0

L

k2dk

3E
2`

` dv

u~v2kV/2!21 ia~V!~v2kV/2!2k2u2
.

~21!

The ultraviolet limit to thek integration in Eq.~21! will be
set by some microscopic length scalea(L;2p/a) at which

FIG. 5. ~a! The velocity distribution and~b! the density distri-
bution in the presence of temperature.G50.002 andV50.2.

FIG. 6. The dependence of the amplitudeA5A^m2& of the den-
sity fluctuations on a driving velocityV and a strength of therma
noiseG.
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the resultant large spatial gradients which will occur at t
inner scale break the validity of the linear approximatio
Integrating Eq.~21!, we are then able to estimate the ba
qualitative dependence of the amplitude of the density fl
tuations onG andV. We obtain

^m2&5
G

pa~V!
E

0

L

dk5
GL

pa~V!
. ~22!

Note that according to Eqs.~22! and ~18! the density fluc-
tuations grow withG, diverging as 1/AV2V1* as V→V1* ,
and tend to a constant whenV becomes large enough. A
these facts are consistent with our numerical results.

For velocitiesV,V1* the dependence of the density flu
tuations onG is just the opposite: the amplitude decreas
monotonically with increasingG. This can be understood i
we recall that in this case the solutionsv(x)5V/2 and
m(x)50 are unstable. This means that in the absense
thermal noise we already have a spatiotemporal structure
pearing due to the nonlinear interactions present, and con
rent switching between the basins of attraction of solutio
~14a! and ~14b!. Thermal noise only destroys this structur
in contrast with the previous case, where it helped to bu
one.

Finally for V5V1* the dependence of the amplitude of t
density fluctuations onG is not monotonic, as can be see
from Fig. 6. The simulations show that the most pronoun
fluctuations occur for a specific value ofGmax. In Fig. 6,
Gmax'1023. This value of the ‘‘optimal’’ noise strength is
determined by a subtle relationship betweenV andG, which
is similar to the well-known phenomenon of stochastic re
a-

.

. E

. B
s
.

-

s

of
p-

ur-
s
,
d

d

-

nance where the cooperation between the external drive
the thermal noise leads to the appearance of well-pronoun
maxima in the temporal response of a dynamical system

V. CONCLUSIONS

Coherent structures appear at the mesoscale in mol
larly thin films of liquid lubricant when driven between tw
relatively sliding plates in the presence of stick-slip boun
ary conditions. The spatiotemporal structures which may
velop in thin lubricating films under shear is a topic of
great interest now@3,10,11#. We observed in our simulation
that the induced density fluctuations are a strong function
the thermal noise, and can change by several orders of m
nitude. This is similar to the well-known phenomenon
stochastic resonance where the cooperation between th
ternal drive and the thermal noise leads to the appearanc
resonant drift in Langevin equations, but here the coope
tion between noise and drive creates well-pronounced s
tiotemporal structures.

Such coherent stuctures are also likely to appear in t
dimensional hydrodynamic studies based on Eqs.~1! and~3!.
They will have a strong influence on the resulting lubricati
properties of thin films as the temperature is varied. Spec
cally, at low velocities we observed a reduction in frictio
with increasing thermal noise. Such a dependence of fric
on temperature is well known in the literature@28,3#, but it
has mainly been ascribed to phase transitions in the film
lubricant, while our analysis suggests that anomalous di
pation is a consequence of the development of noise-indu
coherent structures.
.
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