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Friction and noise-induced coherent structures in boundary lubrication
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We examine the effect of stick-slip boundary conditions on the friction generated by a molecularly thin layer
of a liquid lubricant separating two plates. For one-dimensional compressible flows, noise-induced coherent
dissipative structures on a micron scale are generated due to cooperation between the external drive and the
thermal noise. As a function of the thermal noise these structures show a peak in their amplitudes similar to
stochastic resonance. At low velocities a reduction in friction with increasing thermal noise is observed.

PACS numbses): 47.52:+], 83.50.Gd, 83.50.Ws, 68.15e

I. INTRODUCTION represented by velocity-weakening effective interactions

[18,19 between the confined fluid film and the interface, can

The study of friction between two surfaces is a very oldbe expected to significantly affect their hydrodynamic behav-

problem, but an extremely important one from a technologidor. In this paper we therefore study the compressible hydro-
cal point of view[1—4]. This is especially true on the meso- dynamic behavior of a molecularly thin fluid layer between
scopic scale, where, despite significant efforts made in recei¢/0 sliding plates in which the dominant interactions are

years, much remains to be understood about the fundamentfese velocity-weakening forces. Because of the complexity

processes responsible for friction and lubrication. New ex©f the problem, we only consider a one-dimensional version
perimental methods such as the quartz crystal microbalanc¥ the fluid evolution. Numerical simulations of the resulting

[5] and the surface-force apparafi&-11] have, however, equations of m_otion show that the complex dynamic_s qf th_e
provided new insights into the nanoscale and mesoscale pr<§y stem gives rise to the appearance of a coherent dissipative

cesses occurring during dissipation at interfaces, and stim@éié%sgal%zﬁgﬁ ;iollnG?a::iL::IElgv A?Czlsvll)afmteegglevrig dp;e—
lated a great deal of theoretical reseaftB—-1§. y L '

It is common to distinguish hydrodynamic lubrication reduction in friction at low velocities with increasing tem-

from boundary lubrication. In the first case, the layer of fluid perature.

between the sliding plates is relatively thick, and the friction The scheme of the paper is as follows. In Sec. Il we
g pla y ’ . describe our model. Section Il is devoted to a presentation
can be calculated straightforwardly from the Navier-Stokes

equations with stick boundary conditions. The case Ofand discussion of our numerical simulations. In Sec. IV we
q y ' - discuss the relationship between the temperature of the con-

boundary Iubr!catlon, however, when the |ubncatm_g layer Sfined fluid layer and the strength of the random thermal force
molecularly thin, has a much more complex dynamics. Com-

; . 4 ._acting on it. Section V concludes the paper with a summary
mon thgore‘ucal approaches to this prpbllem include stud|e3nd discussion of our results.
of nonlinear dynamical systems consisting of several par-

ticles r_novin_g bet\_Neen two platd42-14, ar_ld_ molecular Il STICK-SLIP HYDRODYNAMICS
dynamics simulations of ensembles of a finite number of
particles[15,16]. The presence of stick-slip boundary conditions at the me-

While fluids retain their bulk shear flow properties when soscale is a direct result of the strong intermolecular forces
the thickness of the lubricating film is more than about tenthat exist between a sliding thin film and the surface layer at
molecular diameters, recent studies show that confined thithe atomic scale. There exists strong evidence that the stick
film fluids display strong viscoelastic characteristics, slowforces on ordered arrays are much larger when the array is
relaxation, and solidlike behavior to the point where the elasinteracting with a commensurate substrate than with an in-
tic forces significantly exceed the viscous 0fg8®,11,7,4.  commensurate onel,20,21. The underlying reason for this
At the same time, it is known experimentally that even oneis clear: when the lattice is commensurate each atom can lie
molecular layer of a fluid can significantly reduce the inter-in a potential minimum of the substrate. For an incommen-
facial friction[17]. A liquid in such an extreme state of con- surate lattice strong frustration occurs as the atoms in the
finement can exist in a variety of differently ordered statesordered array try to accommodate both their interatomic in-
depending on the temperature and the sliding velo@ly teractions and their atom-substrate interactions, leading to
and dynamic phase transitions such as shear melting can ocemmensurate-incommensurate transitip28]. Studies of
cur during sliding. The reason for, and the nature of, suchhe influence of such interactions using the dynamic Frenkel-
slowed down dynamics in confined fluids is still not fully Kontorova model lead to the conclusion that velocity weak-
understood, and its nonequilibrium structure remains to bening stick-slip forces are a generic consequence of such
elucidated 11,4]. interatomic interactions[12,13. Indeed, such stick-slip

At the mesoscopic scale stick-slip boundary conditionshoundary conditions are not limited to the nanoscale, and in
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macroscopic investigations of dry frictiof23—-25 at low F
velocities the dynamics was also usually characterized by
intermittent periods of stick and slip. Several dynamical tran-
sitions have been found in such macroscopic investigations
including a supercritical Hopf bifurcation between stick-slip
and steady sliding, and hysteresis due to subcritical Hopf
bifurcations. \
Investigations of the consequences of such velocity- ]
weakening interactions have already been used in the context L \
of earthquake modell8,19,26 involving the dynamics of F i
sets of elastically coupled driven blocks interacting with a o
substrate via singular velocity weakening friction forces. The
dynamics of the earthquake models is described by coupled FIG. 1. The velocity weakening friction forde(v) between a
sets of ordinary nonlinear differential equations. Driven thinplate and the layer of a lubricant as a functiorvof
films also show strong viscoelastic characteristics, which
means that their dynamics should be described by the hydramnderstand the most basic phenomena that such stick-slip
dynamics of compressible fluid, while the strong stick-slipinteractions can induce in the driven hydrodynamics of thin
interactions will lead to strong velocity weakening stresses afilms by looking at a one-dimensional version of the hydro-
the interface. dynamics in which a velocity-dependent friction forgév)
In principle, the general form of the elastohydrodynamicbetween a plate and the layer of a liquid lubricant, shown
equations that needs to be investigated to understand the bgshematically by the solid line on Fig. 1, replaces the full

havior of the driven thin film is, therefore, effect of the boundary conditions.
. _ The functionF (v) ranges betweert Fj at zero velocity,
pv  ldt+pv-Vu,=—3dpldX,— 7,5l Xg+ pGo(X,t), decreases monotonically as the velocity grows, and begins to
L (1)  grow linearly after some characteristic velocity (the ap-
dplat+V(pv)=0, parent discontinuity ab =0 should be considered as the

limit case of a continuous dependence at velocitiesu
wherer,z is the stress tensor in the thin film, while the last shown on Fig. 1 by the dotted lineThe forceF (v) acts like
term[G,(x,t)] on the right hand side of Eq1) represents a body force in our one-dimensional model. It can be con-
the thermal noise which has Gaussian statisticsidered as a coarse-grained representation of the complex
<Ga(>21,tl)G/;(iziz))=T5a,35(>z1—>22) S(t—t,). stick-slip boundary conditions. It is this force which is the
The stress tensor will have strong viscoelastic charactefasic source of nonlinearity in the model and leads to the
istics, resulting in a relationship between the rate of straiffomplex spatiotemporal dynamics exhibited by the thin film.
dv,19x4 and the stress,; of the form The velocityv (x,t) and the density(x,t) in the driven
film are therefore given by
W o lIXg=(1+0)/Ed7,gldt+ (7o/ n)F(7/79), (2)
pdvl dt+ pv dvl dx+ c?dpl Ix
whereo is Poisson’s ratioE is Young’s modulusy is the

dynamic viscosity of the film, and, is a stress scale such =—p[F()+F(v—=V)]+pG(xt), (4
that, for 7< 7y, the film behaves as a viscous fluid. For non-
Newtonian fluids typical parametrizations might include the dpl dt+pdvl Ix+vdpldx=0. 6)

Eyring-Ree formF (x) = sinh(). ) )
The basic stick boundary conditions for bulk flows needH€reé ¢“=dp/dp is the square of the speed of the sound,
ich may of course be very different from that observed in

to be replaced by nonlinear velocity weakening shear stress . -
the bulk fluid, and which we treat as a constant correspond-

Txvy) and7,,(v,) at the boundaries of the driven thin film. oo P PR
For example, a typical velocity weakening stress would b9 {0 the average compressibility of the thin film in the
7(v) = oof (v/c), wheref(u)=1[bu+sgnu)]+Ku, andc longitudital direction. This assumption is valid provided the

is the speed of sound in the compressible thin film. Thus, ifl€nsity fluctuations are much less than the average density,
addition to the boundary conditions,(x,y,z=04)=0 and which indeed turns out to be the case. The sum of two force
v (x,y,z=H,t)=0, there exist the nonlinear velocity weak- €MS[F(v)+F(v—V)] on the right hand side of Ed4)

ening boundary conditions for the components of the veloc-re,presents the interactiofforce gnd unit magsof a fluid
ity parallel to the interface: with both plates, one plate being at rest and another one

moving with a velocityV. We parametrize the functional

ndv|(X,y,z=01)/9z=7(v|(X,y,z=0})), dependence df(v) as
3
ndv|(x,y,z=H,t)/dz=r(v|(x,y,z=H,t) = V), ® F(v)=Fof(v/c), (6)
whereV is the velocity of the upper plate. where f(u) =1/[bu+sgn@) ]+ Ku. This form of the func-

Clearly the complexity and nonlinearity of Eq&l)—(3)  tion F(v) corresponds to the solid line in Fig. 1.
will lead to large number of different spatiotemporal phe- The last term on the right hand side of E4) represents
nomena depending on driving, thermal noise, and materighe thermal noise which is taken to be uncorrelated and
properties of the thin film. However, in this paper we wish to Gaussian:
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<G(X1,tl)G(XZ,t2)>:F6(X1_X2)5(t1_t2) (7) aU/&t+Ul9U/aX+(9m/(9X:_[f(U)+f(U_V)]+G(X,t),
®)

As the fluctuation-dissipation theorem tells us that the co- am/dgt+ dvldx+vadml9x=0. 9)
efficientI" in Eq. (7) is proportional to the temperature, in
this paper we usk as a measure of the temperature. We will
elaborate on the relationship betwdemand the real tempera-
ture below in Sec. lll.

Since we consider the system described by Egjsand (9)
as infinite in space, we do not introduce any boundary con-
ditions, but will rather study the initial value problem start-

Equation(4) does not contain a viscosity term. This cor- mg_rfrr]om slon:f |n|t|a_l c<|)nd|t|on;0(x) 'tmO(X.)' del. which
responds to one of our basic simplifying assumptions that the € only dimensioniess parameters in our model, whic

dynamics of the thin film is dominated by nonlinear interfa- /€ stlll£ac11ve to set ar:]a andK ;n“f(:J) [Eq. (6)|1' The ,F,)a' q
cial interactions, and that the elastic forces in the film ard@Meterb determines the rate of “velocity weakening,” an

more important then the viscous ones. This appears to blé gives thg rate of the incre_ase of the force for large veloci-
reasonable for very thin films, and strong stick-slip boundar)}'es' Specifically, the minimal velocity oceurs ato/c
conditions. We have verified this by doing simulations in a=(Jb/K—1)/b. These parameters are material dependent.
presence of viscosity, and found that it does not make &S We expectvo/c<1; we chose them to have the physi-
significant contribution to the dynamics of the system forcally reasonable valugs=100 andK =2 which fixesvo/c
experimentally reasonable values. Naturally, for thick films™0-06, and use these values throughout this paper.
this assumption must break down.

If we take the plates in our problem to be of macroscopic . TEMPERATURE AND STRENGTH
size, then the dimensional parameters in the model are the OF THE THERMAL NOISE
speed of soundic]=L/T with dimensions of velocity, the
driving velocity [V]=L/T with units of velocity, [Fg]
=LT 2 with dimensions of acceleration, and the noise
strength[I']=(L/T)® with dimensions of velocity cubed.
Using the material parametecsand F, to define units of
length L=c?/F, and timeT=c/F,, we are left with two

The explicit relationship betweeh which describes the
influence of the thermal environment on the dynamics of the
confined fluid layer and temperatufecan be established in
the case of stick-slip hydrodynamics by generalizing the for-
malism of hydrodynamic fluctuations introduced by Landau
and Lifshitz[27]. We have to determine the rate of change of

dimensionless parameter, the scaled driving velodity . . — .
_ ; ; _ 13 the total entropysS of the fluid, from which it is possible to
V/c and the effective thermal noise strength=1'/c", find the coefficientl” for the correlation functior7).

describing the influence of the environment on the dynamics. Taking int t th i f heat t ‘

Let us estimate the orders of magnitude of these scales of axing Into account the equation ot heat transter,
length L and timeT. In Ref.[10] a modified surface force T(asl ot + v sl ox) = 2pv F 10
apparatus technique was applied to the study of friction be- PT( v )=2pvF(v), (10

tween two atomically smooth crystals of muscovite micawhich, together with two dynamic equatiof® and(5), con-
separated by a molecularly thin film of squalane. The filmstitutes the complete system of hydrodynamic equations, for
thickness in this experiment was 18 A, which ConStitUtedthe production of entropy in the |ayer we obtain

several molecular layers, the diameter of the contact inter-

face was~45 um, and the value of the external oscillatory .

driving force was~10? uN. Thus the typical accelerations S= f fPUF(U)dL- 1D
applied to the film during the experiment wefg~ 10

— 10" m/seé, while a reasonable estimate of the speed of In Eq.(10), sis the entropy of the fluid per unit mass, and
sound in such films i€~10-100 m/sec. We therefore ob- the integration in Eq(11) is done over all the whole fluid
tain a typical length scale in the experiment lof c?/F, layer. In Eqs(10) and(11) we are measuring temperature in
~10"2-1 um and time scaleT=c/F,~10 °-10 8 sec. energy units kKz=1), and we have neglected the thermal
These length and time scales are much larger than the atomflow term in Eq.(10), assuming that the temperature gradi-
length (~10 A) and time (10 2 seq scales, and suggest ents in the system are small.

that nontrivial hydrodynamic phenomena might appear at Having foundS, we can determine the correlation func-

such scales, in agreement with the observation of Demirejon of the thermal stochastic for€(x,t); we obtain
and Granick that the broad power law distributions in the

frictional forces generated by molecularly thin films upto 2 TF(v)

nm thick might be due to long lived spatially coherent stuc-  (G(X1,t1)G(Xz,t2))= p—v5(X1_X2) o(t1—tp).

tures in the thin filn{4]. It is the possibility of the existence (12)

of such coherent stuctures that we are interested in investi-

gating. For the hydrodynamic description to be valid we have to

To do this we first divide Eq94) and (5) by p, and use assume that the velocity fluctuations are much smaller than
instead ofp the logarithmic densityn=1log(p/py), wherep,  the mean hydrodynamic values of the velocity. This means
is the average density in the film. In addition, we make athatv in Eq. (12) cannot be less tham;, the amplitude of
transition to the dimensionless variabbe’s=x/L, t'=t/T, thermal velocity fluctuations. As, however, in the most inter-
andv’=v/c. The dimensionless equations for the velocity esting regiorv is of order of magnitude of the velocity of the
v(x,t) and the logarithmic densityn(x,t) (all primes now external driveV>v¢, to a good approximation we can re-
omitted henceforthare therefore place Eq.(12) by
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1 When the velocity of the upper plate reach&s, a pitch-
fork bifurcation in the dynamics occurs: solutigh4c) be-

F ; ll:fgggg comes stable and two new fixed point solutions emerge,
8. =001 v(X)=V/2+ Uy, m(x)=0, (15)

05

which are both unstable withiy=\/(V/2+ 1/b)*— 1/(bK).
Py This situation exists for driving velocitiey/] <V<V3 ,
where V3 =1/K—1/b (note thatVi <V} for K<b; in our
case,V3 =0.49). Finally, forV>V} the two stick solutions
0 . . disappear and we end up with only one stationary solution
0 0.05 0.1 0.15 [Eq. (149] which is stable. Thus we are dealing with a sub-
critical pitchfork bifurcation alV=V; if we take as our con-
FIG. 2. The effective temperature dependent friction forcestrol parameter =(V,—V)/V;.
F+ (V) for three different temperatureE=0.002, 0.005, and 0.01. Numerically we can show that in the case<V7 (or
r>0) any initial conditions with a constant density and
TF, vo(X)<V/2 for all x belongs to the basin of attraction of
(G(x1,t)G(Xz,t2)) = C — 8(x1 = %2) 8(t1 — ta), solution (148, and the film will stick to the lower plate.
po (13) Conversly, the set of initial conditions witdy(x)>V/2 for
all x belongs to the basin of attraction of Ed4b), and the
whereC is a constant of order of magnitude of 1. Substitut-film will ultimately stick to the upper moving plate. But ini-
ing into Eq (13) a room temperature fo'f, V~0.1c and tial distributions OfU(X), CrOSSing the |in®(X):V/2, do not
Po~ 10_9 g/cm_typ|ca| values for one mono'ayer_aﬁg evolve to any Stationary attractor, and as we shall see the
andc estimated in Sec. Il, we obtaii’ =T'/c3~103, the  distributions evolve into mesoscopic scale fluctuating coher-
characteristic order of magnitude used in our simulations. €nt structures. The same is true for higher velocities of the
We emphasize once again that in the case whemdp  Upper platevy <V<Vj (or r* <r<0) though the basins of
fluctuate strongly enough, and amplitudes of their fluctuaattraction of solutiong143 and (14b) are now determined
tions exceed corresponding average values, the hydrodyot by V/2, but byV/2—u, andV/2+ uy, respectively.
namic description is not valid. For our problem this is the ~We are interested in calculating the resulting friction force
case of smalV and relatively large temperatures. Neverthe-acting on the moving platé, (V). It is this quantity which
less, our results in this range of parameters seem to be quaWill control dynamics of the upper plate when pulled across
tatively reasonable: the linear dependenceé=gf on V and  the lubricated surface. The dimensionless force per unit mass
decreasing oF ;, with increasind"; see Fig. 2. A reasonable is given by the integralin order to obtain the real force per
macroscopic description of this region of parameters caninit mass we have to multiply it bf)
then be done within linear response theory. 1

v

Fe (V)= L
IV. NUMERICAL RESULTS plate

f R eOfu(x)—V),  (16)
0

Let us first consider Eqg8) and(9) without the stochas- whereL ;. is the size of the upper plate. Our simulations
tic term. For sufficiently low velocities of the upper plate  show that, in agreement with the experimental results of
<V?*, whereV} =2(yb/K—1)/b=2v,/c (in our casev¥  Demirel and GranicK10], the friction fluctuations do not
~0.12), the system has three stationary solutions in the dcaverage to a constant value over the large contact area of the
main O<v(x)<V corresponding to constant distributions of €xperiment, but coherent dissipative structures at mesoscopic

density and velocity: scale dominate the dynamics.
It can easily be seen that if the system is found in one of
v(x)=0, m(x)=0, (144 the attractive stick phasé$4a and(14b), the resulting fric-
tion F;,(V) coincides withf(V), the basic force of interac-
v(X)=V, m(x)=0, (14p  tion between a plate and the layer from E8). Otherwise, if
the system does not evolve to any of these attractors, the
v(X)=V/2, m(x)=0. (140 resulting forceF;, (V) will be quite different fromf (V). For

instance, in the cas€<V7 , the simplest nontrivial initial

Note that if the existence of solutiofi$4a and(14b) is not  distribution v(X), crossing the linev(x)=V/2 just once,
immediately obvious for the singular form &f(v), then it  evolves to a stable “kinklike” solution. The velocity profile
becomes clear when we regdf@v) as a limit of a continu-  of this kink moves in the liquid with a speed close to the
ous function. speed of the sound The velocity of the moving plate in this

Linear stability analysis shows that the first two solutionssimulation was chosen &=0.01(in units ofc). The calcu-
are stable, and that they are attractors of the system. Thdgtion of the effective friction force for this solution gives
represent the film sticking to the static lower or moving up-F¢ (V=0.01)=0.29, which drastically differs fromf(V
per plate, respectively. The third solution is unstable and=0.01)=0.52.
represents the whole fluid moving with the average velocity Note that although we choose the velodityf the upper
of the upper and lower plates. plate to be a constant, we would expect the results we now
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describe to be valid even when the dynamics of the upper =0.002 V=0.002
plate is not steady. This “adiabatic” point of view is justi- 0.04
fied by the fact that the time scaleof our problem is typi-
cally very small with respect to a time scateharacterizing
the motion of the upper platgor instance, for the frequency 0.02+
of the external drive 1 kHzr~10"3 sec>T).
In the absence of thermal noise, if the confined fluid is
taken to be initially at rest witly3(x) =0 andmg(x) =0, it
will always stay in the basin of attraction of this attractat
least, as long as the velocity of the upper plate does not
become too largeV<V3). Therefore, for this system the -0.02¢
effective friction forceF;, (V) will coincide with f(V).
The presence of thermal noise changes the situation dra- (a)
matically. When the velocity is small enough, the stochas-
tic force can excite the liquid sufficiently for the velocity
distribution to cross the line(x)=V/2, so the system does
not evolve to any of the two attractof$4a and (14b). The 0.0005
spatiotemporal fluctuating structure, determined by nonlinear 2
properties of the system and induced by thermal noise, is "
developed, and;, (V) differs significantly fromf (V). Scal-
ing arguments would suggest that this occurs whencV?
or I'’=(V/c)?2. Thus such noise induced fluctuations will be
most easily developed at low velociti®% When the upper
plate moves with significantly higher velocities, the thermal
excitation becomes relatively small, but, if the confined fluid (b)
is already excited and the velocity distribution crosses the
line v(x)=V/2, the spatiotemporal fluctuations will persist. x
This means that to observe this fluctuating structure, when
simulating the dynamics of the fluid for relatively large
and relatively small’, we need to choose the initial velocity
distribution to be close toy(x) =V/2, and the dynamic evo- tuations[Fig. 3b)] reveal some periodic structure of small
lution of the fluid will be completely different compared to amplitude on the background of the noise. It is easy to un-
the evolution from the initial conditiomo(x)=0 when the derstand that the corresponding fofég(V) has to be rather
film will stick to the lower interface. This strong dependencesmall because the velociffig. 3@)] strongly oscillates al-
of the evolution on initial conditions is the generic behaviormost symmetrically around zero. This causes the second
in complex nonlinear dynamic systems. The fact that thismultiplier term in the integral in Eq.16) to oscillate and to
type of behavior may be relevant to the physics of friction inmake the integral small.
thin lubricating films is, however, surprising. In the casevV=0.12 (Fig. 4), solution (140 is neutrally
We numerically integrated the hydrodynamic equations ofstable. This is the case with the most pronounced structure in
motion for several different values of thermal noise and for ahe velocity and, especially, in the density fluctuations. Since
wide range of velocities of the moving platé The initial  our natural spatial scale &/F, the period of this structure
conditionsv o(x) = V/2 andmgy(x) =0 were taken in all these is of order of magnitude of 1@m. Indirect evidence of the
calculations, as argued above. existence of such large scale spatial structures in the thin film
Figure 2 represents the effective temperature dependenf a liquid lubricant was given in Refl10]; also see Refs.
friction forcesF;, (V) for three different values of thermal [3,4].
noise:I"'=0.002, 0.005, and 0.01. As we showed in Sec. lll, Finally, in the cas&/=0.2 (Fig. 5), solution (140 is the
these values of’ correspond to experimentally reasonableattractor of the system. The thermal noise excites the fluid in
temperatures of order of magnitude of a room temperature. ke vicinity of this attractor, the amplitude of the resulting
can be seen that the functional dependeRggV) in the  periodic structure in density fluctuations being more than one
presence of temperature differs significantly frégv), es- order of magnitude smaller than in the previous case.
pecially at small velocities. Figure 6 shows the dependence of the amplitutle
Figures 3-5 present the velocity and density distributions= \/(m7> of the density fluctuations on the velocity for
for I'=0.002 and three different values ®f 0.002, 0.12, several values of the thermal noiEe 0.0001, 0.001, 0.002,
and 0.2. These three cases give three distinct types of behaand 0.005. The simulations clearly show that all the fluctua-
ior of the system wheW<V7} , V~V7, andV>V] . Inthe tions have a peak fov=V7~0.12. For velocitiesV>V}
first case V=0.002[Fig. 3(@], the stationary solutiofl4c  the amplitude of the density fluctuations grows monotoni-
is unstable and the system tends to build a spatiotemporahlly with I" and decreases asbecomes larger.
structure with the velocity oscillating between two attractors  This behavior can be understood by means of a linear
v(x)=0 andv(x)=V. However, the thermal noise in this expansion of hydrodynamic equatiof@® and(9) around the
case is relatively large and the dynamics is basically deterstate(14c) which, in this case, is the attractor. The linearized
mined by the stochastic term. Nevertheless, the density fluequations8) and(9) are

o

Velocity

Dens

-0.0005

FIG. 3. (a) The velocity distribution andb) the density distri-
bution in the presence of temperatufe=0.002 andv =0.002.
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FIG. 4. (a) The velocity distribution andb) the density distri-
bution in the presence of temperatufe=0.002 andv=0.12. FIG. 5. (a) The velocity distribution andb) the density distri-
bution in the presence of temperatufe= 0.002 andv=0.2.
Vv
U+ Eux+mx=—a(V)u+G(x,t), (178 I (A
<m(x,t)2>=—2f k2dk
w4Jo
V
m;+ Uy + me=0, (A7b Xfc do
—=(w—kVI2)2+ia(V)(w—kVI2)—K?|?

whereu(x)=v(x)—V/2, and (22)

bV 2 The ultraviolet limit to thek integration in Eq(21) will be
a(V)—[f(v)+f(v—V)];V/z—Z[K—b/ (2 +1) : set by some microscopic length scalg\ ~2/a) at which
(18)

0.5
Note that asV— V7 critical slowing down occursu(V) 1. '=0.0001
~ag(V—V¥), with ag>0. 2. T'=0001
Fourier transforming equatiori¢7a and(17b and con- 3. I'=0.002
sidering the dynamics of the individual modes, we obtain 5 4. T'=0.005
0.25
2 k2|ka|2
[My,|*=r—— 7 — — . (19
|(w—kVI2)%+ia(V)(w—kVI2)—k?| /] 4
4

Here my, and G, are Fourier transforms ai(x,t) and
G(x,t), respectively. Thus

, dk de , 0 0.1 y 02 0.3
(MOHH= | 5 5 (1Ml (20
FIG. 6. The dependence of the amplitudle \(m?) of the den-
sity fluctuations on a driving velocity and a strength of thermal

Finally as Eq.(7) yields (|G,,|?)=2I", we obtain noiseT".
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the resultant large spatial gradients which will occur at thisnance where the cooperation between the external drive and
inner scale break the validity of the linear approximation.the thermal noise leads to the appearance of well-pronounced
Integrating Eq.(21), we are then able to estimate the basicmaxima in the temporal response of a dynamical system.
qualitative dependence of the amplitude of the density fluc-

tuations onl” andV. We obtain
V. CONCLUSIONS

A
IEV) J dk= l (22 Coherent structures appear at the mesoscale in molecu-
0

ma(V) larly thin films of liquid lubricant when driven between two
: . relatively sliding plates in the presence of stick-slip bound-
Notg that acco@ng to. Eq$?2) and (18) thf density fl*uc- ary congitions.grr?e spatiotemp%ral structures whicrl? may de-
tuations grow withl’, diverging as YV—Vi asV—=Vi,  yglop in thin lubricating films under shear is a topic of a
and tend to a constant whanbecomes large enough. Al great interest noW,10,14. We observed in our simulations
these facts are consistent with our numerical results. that the induced density fluctuations are a strong function of
For velocitiesV<V} the dependence of the density fluc- the thermal noise, and can change by several orders of mag-
tuations onl’ is just the opposite: the amplitude decreasesitude. This is similar to the well-known phenomenon of
monotonically with increasing’. This can be understood if stochastic resonance where the cooperation between the ex-
we recall that in this case the solutiongx)=V/2 and ternal drive and the thermal noise leads to the appearance of
m(x)=0 are unstable. This means that in the absense g&sonant drift in Langevin equations, but here the coopera-
thermal noise we already have a spatiotemporal structure agion between noise and drive creates well-pronounced spa-
pearing due to the nonlinear interactions present, and concufiotemporal structures.
rent switching between the basins of attraction of solutions Such coherent stuctures are also likely to appear in two-
(143 and(14b). Thermal noise only destroys this structure, dimensional hydrodynamic studies based on Etjsand(3).
in contrast with the previous case, where it helped to buildThey will have a strong influence on the resulting lubricating
one. properties of thin films as the temperature is varied. Specifi-
Finally for V=V7 the dependence of the amplitude of the cally, at low velocities we observed a reduction in friction
density fluctuations o’ is not monotonic, as can be seen with increasing thermal noise. Such a dependence of friction
from Fig. 6. The simulations show that the most pronouncen temperature is well known in the literatur28,3], but it
fluctuations occur for a specific value of,,4. In Fig. 6, has mainly been ascribed to phase transitions in the film of a
I'a=103. This value of the “optimal” noise strength is lubricant, while our analysis suggests that anomalous dissi-
determined by a subtle relationship betwaéandI', which  pation is a consequence of the development of noise-induced
is similar to the well-known phenomenon of stochastic reso<oherent structures.
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